
(2) Fatkhurrochman Fatkhurrochman

*Corresponding author
AbstractMagelang Regency has various tourist destinations with highly diverse potentials, including nature, history, culture, and religious tourism. However, the management of these tourism potentials still faces serious challenges, particularly in terms of mapping, which has not been well-structured. The numerous different tourist spots with various regional potentials have led to local and international tourists experiencing difficulties in selecting promising destinations. The role of mapping for clustering tourism potentials has become a primary need to accelerate economic growth in Indonesia. If clustering is conducted conventionally, without being based on in-depth data analysis, it can risk producing policies that are not well-targeted. The objective of this study is to map the tourism potentials in Magelang Regency using the optimization of the K-Means Clustering method. This clustering is based on variables: attractiveness, accessibility, facilities, number of visitors, ticket prices, security, and rating values. The research methods include literature review, data collection, data pre-processing, K-Means algorithm implementation and optimization, model evaluation and validation, system visualization development, testing, reporting, and publication. The final result of this study is the clustering of tourism potentials into three 7 clusters, the Silhouette Coefficient test yielded a score of 0.504. |
DOIhttps://doi.org/10.33122/ejeset.v6i2.1011 |
Article metricsAbstract views : 45 |
Cite |
References
Kaunaen, R., Ngarawula, B., & Wahyudi, C. (2024). Dynamics of social adaptation. International Journal of Research in Social Science and Humanities, 5(1), 63–93.https://doi.org/10.47505/IJRSS.2024.1.6)
Torrido, A., & Torrido, A. (2024). Keberlanjutan pengembangan di Dusun Sabrangrowo. Jurnal Administrasi Sosial, 13(3), 575–600. [https://doi.org/10.20961/Jas.V13i3.93402]
Doborjeh, Z., Hemmington, N., Doborjeh, M., & Kasabov, N. (2022). Artificial intelligence: A systematic review of methods and applications in hospitality and tourism. International Journal of Contemporary Hospitality Management, 34(3), 1154–1176. [https://doi.org/10.1108/ijchm-06-2021-0767]
Suhandi, A. (2023). Strategi fundraising dan program pemberdayaan masyarakat untuk meningkatkan ekonomi mustahik pada lembaga filantropi BAZNAS Kabupaten Kuningan. Al-Bahjah: Journal of Islamic Economics, 1(1), 44–55. [https://doi.org/10.61553/abjoiec.v1i1.10]
Bashir, M., Asghar, S., Ashfaq, M., Raza, S. S., & Zahoor, S. (2024). Digitalizing tourism and interactive navigation: A case study of Pakistan. Journal of Asian Development Studies, 13(1), 547–566.[https://doi.org/10.62345/jads.2024.13.1.46]
Gungor, S., Sucu, F., Dinc, Y., Cetin, M., & Adiguzel, A. D. (2024). GIS based daily tourism route proposal for surrounding provinces and districts from Ankara’s Çankaya District (Turkey). Environment, Development and Sustainability. [https://doi.org/10.1007/S10668-024-04800-5]
Damos, M. A., Zhu, J., Li, W., Khalifa, E., Hassan, A., Elhabob, R., et al. (2024). Enhancing the K-means algorithm through a genetic algorithm based on survey and social media tourism objectives for tourism path recommendations. ISPRS International Journal of Geo-Information, 13(2). [https://doi.org/10.3390/Ijgi13020040]
Liu, B., Li, Q., Zheng, Z., Huang, Y., Deng, S., Huang, Q., et al. (2025). A review of multi-source data fusion and analysis algorithms in smart city construction: Facilitating real estate management and urban optimization. Algorithms, 18(1), 1–21. [https://doi.org/10.3390/A18010030]
Studi, P. (2024). Implementasi kebijakan pemasaran dalam pemberdayaan desa wisata (studi komparatif pada desa wisata Candirejo dan Karangrejo Kabupaten Magelang). Jurnal Perencanaan Pembangunan, 6(1), 1–30. [https://doi.org/10.32834/jplan.v6i2.794]
Shrestha, D., Wenan, T., Shrestha, D., Rajkarnikar, N., & Jeong, S. R. (2024). Personalized tourist recommender system: A data-driven and machine-learning approach. Computation, 12(3). [https://doi.org/10.3390/computation12030059]
Hassan, E., Malik, F., Khan, Q. W., Ahmad, N., Sardaraz, M., Karim, F. K., et al. (2025). A hybrid K-Means++ and particle swarm optimization approach for enhanced document clustering. IEEE Access, 13, 48818–48840. [https://doi.org/10.1109/access.2025.3535226]
Vardakas, G., & Likas, A. (2024). Global K-Means++: An effective relaxation of the global K-Means clustering algorithm. Applied Intelligence, 54(19), 8876–8888. [https://doi.org/10.1007/s10489-024-05636-2]
Wiroonsri, N. (2024). Clustering performance analysis using a new correlation-based cluster validity index. Pattern Recognition, 145, 109910. [https://doi.org/10.1016/j.patcog.2023.109910]
Maemunah, S., Prasetyo, A., & Wahyudianto, H. (2024). Territorial assets and sustainable development: A study of competitiveness in Central Java’s regencies. BISEB Conference Proceedings, 1, 1–9. [https://unimma.press/conference/index.php/biseb/article/view/73]
Li, Y. (2024). Digital tourism recommendation and route planning model design based on RippleNet and improved GA. Informatica, 48, 133–152. [https://doi.org/10.31449/inf.v48i10.5790]
Shpak, N., Kulyniak, I., Novakivskyi, I., & Oleksiv, I. (2023). Clusterization in tourism development level’s assessment of regions: Example of Ukraine. Journal of Tourism and Services, 14(26), 45–56. [https://doi.org/10.29036/jots.v14i26.444](https://doi.org/10.29036/jots.v14i26.444)
Jauhari, A. A. D. R., Anamisa, D. R., & Mufarroha, F. A. (2022). Analysis of clusters number effect based on K-Means method for tourist attractions segmentation. Journal of Physics: Conference Series, 2406(1), 012024. [https://doi.org/10.1088/1742-6596/2406/1/012024]
Moonpen, U., Mungsing, S., & Banditwattanawong, T. (2021). Classification model development based on cluster-to-class distance mapping for tourism form prediction of inbound tourism market in Thailand. Current Applied Science and Technology, 21(2), 393–407. [https://doi.org/10.14456/cast.2021.31]
Abdo, A., Abdelkader, O., & Abdel-Hamid, L. (2024). SA-PSO-GK++: A new hybrid clustering approach for analyzing medical data. IEEE Access, 12, 12501–12516. [https://doi.org/10.1109/access.2024.3350442]
Liao, Y., Sun, M., Lu, F., Wu, Q., & Zhu, H. (2025). Prediction of non-Newtonian rheology in anaerobic co-digestion: Substrate mixing ratio effects on consistency and shear thinning characteristic. Chemical Engineering Journal, 510, 161646. [https://doi.org/10.1016/j.cej.2025.161646](https://doi.org/10.1016/j.cej.2025.161646)
Asia, U. M. (2024). Model sistem cerdas rekomendasi wisata terbaik: Metode weighted product dan K-Means. STMSI, 13, 2116–2129. [https://doi.org/10.32520/stmsi.v13i5.4514]
Tang, W., Kaizhou, G., Zhenfang, M., Zhongjie, L., Hui, Y., Wuze, H., et al. (2025). Local search-based meta-heuristics combined with an improved K-Means++ clustering algorithm for unmanned surface vessel scheduling. International Journal of Production Research, 1–25. [https://doi.org/10.1080/00207543.2025.2470991]
Sun, J., & Xia, Y. (2024). Pretreating and normalizing metabolomics data for statistical analysis. Genes & Diseases, 11(3), 100979. [https://doi.org/10.1016/j.gendis.2023.04.018]
Mohamed, A. A., & Kronenberg, J. (2025). Users’ experiences of park accessibility and attractiveness based on online review analytics. Scientific Reports, 1–18. [https://doi.org/10.1038/s41598-025-88500-8]
Prasetiyo, D., Lestati, W., Atina, V., Bangsa, U. D., & Surakarta, K. (2024). Penerapan clustering dengan K-Means untuk pemilihan menu favorit di Tetra Coffeeshop. JATISI, 11(3). [https://doi.org/10.35957/jatisi.v11i3.8347]
Mulyadi, S., Insani, F., Agustian, S., & Afriyanti, L. (2024). Grouping electricity distribution data using the Mini Batch K-Means clustering algorithm. MALCOM, 4(3), 1051–1062. [https://doi.org/10.57152/malcom.v4i3.1425]
Ramadhan, A. I., Atika, P. D., & Ramdhania, K. F. (2025). Analisis clustering K-Means untuk pemetaan tingkat pengangguran terbuka di provinsi-provinsi Indonesia tahun 2013–2023. WBPYDB, 5(2), 109–122. [https://doi.org/10.31599/wbpydb62]
Fadhillah, M. F., Lovely, A., Suyoso, A., & Puspitasari, I. (2025). Customer segmentation with clustering algorithm based on Recency, Frequency, and Monetary (RFM) attributes. MALCOM, 5(1), 48–56. [https://doi.org/10.57152/malcom.v5i1.1491]
Soesmono, S., Pertiwi, R., Saputri, B., & Putri, N. (2025). Pengelompokan provinsi di Indonesia berdasarkan tingkat pengangguran tahun 2023 menggunakan K-Medoids. ESDS, 3(1), 498–515. [https://journal.uii.ac.id/esds/article/view/38498]
Ariani, A. F., Aulia, K., Ode, L., & Arafat, A. (2024). Pengembangan dashboard interaktif menggunakan Looker Studio untuk visualisasi dan prediksi harga komoditas cabe di Jawa Timur. JATI, 8(4), 8067–8074. [https://doi.org/10.36040/jati.v8i4.10616]
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Kanafi Kanafi, Fatkhurrochman Fatkhurrochman

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

























